# Neutrino physics with dark matter detectors

Joachim Kopp

Neutrino Working Group Meeting, Oct 24, 2011



based on work done in collaboration with Carlos Argüelles, Roni Harnik, Pedro Machado

#### **Outline**

Neutrinos and direct dark matter detection

### **Outline**

Neutrinos and direct dark matter detection

## Neutrinos and direct dark matter detection

 Solar and atmospheric neutrinos are a well-known background to future direct dark matter searches



#### Neutrinos and direct dark matter detection

 Solar and atmospheric neutrinos are a well-known background to future direct dark matter searches

see also Gütlein et al. arXiv:1003.5530

- If low-E neutrino interactions are enhanced by new physics (here: a dark photon A', kinetically mixed with the photon + an optional sterile neutrino  $\nu_s$ ), this BG can be enhanced
  - → Possible explanation of DM anomalies?

Pospelov arXiv:1103.3261

Idea: Strong A'-mediated ν<sub>s</sub>-SM interactions at low Ε

## Sterile neutrinos and direct dark matter detection

Can potentially explain CoGeNT excess through ν<sub>s</sub>-e<sup>-</sup> scattering
electron recoil



## Sterile neutrinos and direct dark matter detection

- Can potentially explain CoGeNT excess through  $\nu_s$ – $e^-$  scattering
- With some tuning of oscillation parameters, models like this can also lead to annual modulation.

### **Outline**

Neutrinos and direct dark matter detection

- IceCube and Super-Kamiokande limits on neutrinos from dark matter annihilation in the Sun depend crucially on oscillation physics.
- If sterile neutrinos exist, new MSW resonances can lead to strong conversion of active neutrinos into sterile neutrinos in the Sun

# Oscillation probabilities



Thick red lines = active—sterile oscillations

Carlos Argüelles JK, work in progress

- IceCube limits can be strongly affected by existence of sterile neutrinos.
- If capture cross section and annihilation channels are know (e.g. from direct detection, LHC), neutrinos from DM annihilation are tool to study oscillation physics.